Assessment of interaction with breathing, posture, abdominal muscle activation

Paul Hodges
PhD MedD BPhy(hons) FACP
Professor & NHMRC Senior Principal Research Fellow

Breathing

Normal breathing pattern

Inspiration

Expiration

Scalenes
Diaphragm
External intercostals + Diaphragm
Pelvic floor muscles (ecc)
Erector spinae

Obliquus externus & Internus + internal intercostals
Transversus abdominis + superficial abdominals
Pelvic floor muscles (conc)
Breathing Assessment and training

Rectus abdominis
- Caudal displacement of sternum
- AP rib cage diameter
- Small in transverse diameter

Obliquus externus abdominis
- Transverse rib cage diameter
- Small caudad sternum displacement

Obliquus internus abdominis
- Transverse rib cage diameter
- Small caudad sternum displacement

Transversus abdominis
- Smallest insertional expiratory action
- Expiratory action through elevation of diaphragm
- Transversus diameter of rib cage via IAP
Breathing and pelvic floor

- Pelvic floor muscle activation is necessary for breathing
- Breathing may drive changes in pelvic floor muscle activation
 - e.g., forced expiration – greater PFM activation
- Breathing training may aid modification of pelvic floor muscle activation
 - e.g., relaxed breathing may reduce PFM tone
- Specific challenges from respiratory disease – breathing pattern and coughing

Assessment of breathing

Breathing pattern: Assessment

- Movement
 - Observation & Palpation of breathing movements
 - 3 components – evenly distributed with no dominance
 - Upper chest
 - Basal chest expansion
 - Abdominal displacement
 - Symmetry
- Muscle activity
 - Observation, Palpation, electromyography, ultrasound imaging
- Chest wall flexibility
- Effect of motor control correction
- Effect of posture correction
- Effect of loading

Breathing pattern: Assessment

- Respiratory movements
 - Abdominal movement
 - Bibasal rib cage expansion
 - Upper chest breathing
 - Objective
 - Even distribution of movement between regions
 - No region dominating
 - Consider effect of position
 - Reclined – less basal expansion (less abdominal muscle activation)
- Respiratory muscle activity
 - Abdominal muscle activity
 - Palpation
 - Observation
 - EMG biofeedback
 - Ultrasound imaging

Breathing pattern: Assessment

- Respiratory movements
 - Look before touching
 - Do not indicate that you are evaluating breathing
 - Assess natural breathing
 - Consider
 - Is movement equal in each region?
 - Consider what movement is dominant?
 - Common abnormalities in breathing pattern
 - Hypertension
 - Vertical motion
 - Upper chest breathing

Paul Hodges CCRE SPINE UQ 2019
Breathing pattern: Assessment

- Respiratory muscle activity
 - Abdominal muscle activity
 - Consider
 - Is the muscle activity modulated with breathing?
 - Is there activity that is compromising respiratory movements?

- Diaphragm muscle activity
 - Palpation – rib cage and abdominal movement
 - Observation – rib cage and abdominal movement
 - Ultrasound imaging

Breathing pattern: Assessment

- Respiratory muscle activity
 - Diaphragm muscle activity
 - Consider
 - Does the diaphragm shorten (rib/abdomen movement)?
 - Tight/short/overactive diaphragm
 - High IAP with abdominal brace - prevent diaphragm descent
 - What is the quality of shortening/thickening – is it smooth and slow?

Diaphragm ultrasound imaging

- Thickening of costal diaphragm
- Displacement of central tendon
- Change in length of zone of apposition
Breathing Assessment and training

28/5/19

Paul Hodges CCRE SPINE UQ 2019

Liver
Lung
Rib
Diaphragm origin

Zone of apposition

Central tendon

Diaphragm

Change in length of zone of apposition

Change thickness of diaphragm

Thickening of the diaphragm

Subject position: Supine with head on pillow
Transducer: 12 MHz
Transducer placement:
- Identify 8th & 9th intercostals space (find 12th rib and count up)
- Place the transducer along the IC space
- Place the transducer in the anterior axillary line then optimize
 - Too far back the muscle will peel away and you will loose the image
 - Too far forward the muscle will not thicken much with contraction
- Check both spaces and pick the one with the best image
- Optimize the image
 - Select the depth that optimizes the size

Diaphragm displacement
Diaphragm displacement

- **Subject position:** Supine with head on pillow
- **Transducer:** 3 MHz (set to 4 MHz)
- **Transducer placement:**
 - Place the transducer in the anterior axillary line, below the rib cage
 - Angle the transducer craniodorsally to image through the liver
 - Identify the posterior aspect of the diaphragm
 - Too horizontal you will not see the diaphragm
 - Too vertical it may be hard to see the edge
 - Optimise the image
 - Select the depth that optimizes the size
 - Use m-mode

Length of zone of apposition

- **Subject position:** Supine with head on pillow
- **Transducer:** 12 MHz and 3 MHz
- **Transducer placement:**
 - Identification of the origin of the diaphragm
 - Place 12 MHz transducer longitudinally in the anterior axillary line at approx the 8-9th IC space
 - Identify the landmarks (ribs, liver, diaphragm)
 - Ask the subject to breathe and move the transducer caudally until you can see the ribs
 - In rib space below the origin the muscle in the location of the diaphragm will not thicken with inspiration (TrA)
 - Slip of TrA may be noticeable deep to diaphragm
 - Muscle will thin a little and the diaphragm will not increase in thickness as much with inspiration
 - The rib at which this transition occurs is the origin of the diaphragm
 - Mark the rib with a pen to use as a landmark for the imaging of the zone of apposition

Breathing pattern: Assessment

- **Pelvic floor muscle activity**
 - Activation of PFM during breathing
 - Tonic hold with subtle lengthening (exp) & shortening (insp)

⇒ Assess breathing pattern and activation of abdominal muscles during breathing
Assessment: Breathing

- Evaluate breathing pattern during:
 - Quiet breathing

- Breathing movements
 - Abdominal displacement
 - Lateral rib cage expansion
 - Upper chest elevation

- Muscle activation
 - Abdominal muscles
 - Diaphragm muscle

Breathing pattern: Assessment

- Postural assessment
 - Neutral spine
 - Optimal breathing pattern
 - Slump – upper chest
 - Thoracolumbar ext – basal expansion
 - Rotated – decreased basal, increased abdo.

Lee & Hodges 2006

- Assess impact of posture correction

"Neutral spine"

- Aim:
 - Cervical lordosis
 - Thoracic kyphosis
 - Lumbar lordosis
 - Neutral pelvic tilt
 - Sagittal balance/alignment
 - Frontal alignment

- Benefits:
 - Optimal loading
 - Avoid creep
 - Reduce global muscle overactivity
 - Increase local muscle activity

- Consider:
 - Pathology (e.g. stenosis)
 - Spinal mobility
 - Not static – functional range

Posture/alignment

Key

- Control of
 - Lumbar lordosis/pelvic tilt
 - Thoracolumbar junction
 - Thoracic kyphosis
 - Sagittal/frontal alignment

- Lumbar lordosis - greater multifidus, greater low TrA/OI
- Thoracolumbar ext - greater TL ES
- Slump – minimal activity of extensors

Claus et al, 2010

- Sway – “hang” on OE

Muscle activity in different postures
Assessment: Postural alignment
- Evaluation of sagittal and frontal alignment
- Evaluation of spinal curvature
- Evaluation of muscle activity

Breathing pattern: Assessment
- Muscle activation
 - Assess impact of motor control correction
 - Activation of local muscles
 - Relaxation of global muscles

Breathing pattern: Assessment
- Muscle activation & correction
 - Are muscle activation deviations present?
 - Is muscle activation affecting breathing?
 - What is the effect of contraction of transversus abdominis?
 - What effect does muscle activation correction have on breathing pattern?

Test of “independent” transversus abdominis activation
- Relaxed
- Deep abdominal contraction
- Abdominal bracing

Parasagittal section
Breathing Assessment and training

Parasagittal section

Breathing presentation #1
• Prominent expiratory activity of abdominal muscles in supported positions
 – NORMAL
 • Supported positions – relaxed abdo. muscles
 • Upright positions – Standing +/- respiratory activity of abdo. muscles
 – ABNORMAL
 • Pronounced abdo. Muscle activity in supported postures

Breathing Presentation #2
• Tonic activity of abdominal muscles that limits respiratory motion of chest wall
 – Restrict - bibasal expansion/diaphragm motion
 – Enhance - Upper chest breathing

Interpretation
• Increased OE activity
 – Consequence of pain?
 – Increased resistance to expiration (COPD/Asthma)

• Decreased upper chest movement
 – OE holding rib cage down – decreased basal expansion & abdominal wall displacement
 – Vertical motion only strategy left
 – Posture – thoracolumbar extension – change rib motion

Breathing Presentation #3
• Inability to maintain deep muscle contraction with breathing
 1. Loss of deep muscle (including PFM) contraction during inspiration
 – Inability to hold during inspiration
 2. Upper chest breathing
 – Restrict abdominal movement
 3. Shallow breathing
 4. Increase activity of global muscles

Interpretation
• Inability to hold PFM
 – Unable to ecc. contract PFM
 – Inc. pelvic floor descent due to compromised basal expansion
Breathing Presentation #4

- Reliance on abdominal/pelvic floor displacement for breathing
 - Challenge to hold PFM contraction with large change in muscle length

Assessment: Muscle control

- Evaluation of deep abdominal activation
 - Which muscles?
 - What sequence?
 - What quality

Breathing pattern: Assessment

- Effect of loading
 - How does addition of load affect breathing?

Breathing pattern: Assessment

- Effect of loading
 - How does addition of load affect breathing?
 - Breath holding +/- Poor control of alignment when instructed to breathe
 - Excessive abdominal bracing/excessive intra-abdominal pressure
 - Increased vertical motion

Assessment: Muscle control

- Evaluation of bracing and control of loading
 - Quality of control
 - Methods for feedback
 - Threshold for loss of control
 - Asymmetry of control
Breathing Assessment and training

Breathing pattern: Assessment

Basic assessment - sequence
- Observe breathing pattern
- 3 components
- Palpate movements
- Assess muscle activity
 - Palpation
 - EMG
 - US imaging - abdominal wall, diaphragm
- Consider posture and muscle activation strategy
- Assess affect of correction of posture and muscle activation
- Assess affect of loading
- Assess chest wall flexibility

Training of breathing

Breathing: Training goals

- Optimise respiratory movements
 - Encourage even distribution of movement between regions
 - Change breathing pattern to simplify spine control
 - Train symmetry
- Optimise respiratory activity of trunk muscles
 - Reduce tonic muscle activity compromising respiratory motion
 - Reduce excessive respiratory activity of trunk muscles
- Optimise posture to optimise breathing
- Optimise thorax dynamic control (thoracic spine & rib cage) to optimise breathing
- Optimise efficiency of breathing pattern in disease
- Train breathing pattern with motor control progressions

Breathing pattern: Techniques

- Optimise respiratory movements
 - Respiratory training techniques
 - Manual facilitation
 - Quick stretch
 - Positioning
 - Feedback - manual, elastic
 - Need motion of upper chest, basal rib cage and abdomen
 - If high abdominal movement - difficult to sustain TrA contraction
 - If low bibasal - often large OE to compress
 - If high upper chest - OE prevent other motion

Muscle activation: Techniques

- Increase activity of TrA/ MF/ PFM
 - Whole body posture (stretch on muscle)
 - Spinal posture (greater activity in neutral)
 - Instruction
 - Co-contraction with other muscles
 - Manual facilitation
 - Imagery
 - Feedback (Observation, palpation, US)
 - Taping

Breathing pattern: Techniques

- Optimise respiratory activity of trunk muscles
 - Reduce tonic/excessive activity
 - Maintain deep muscle activity during respiration
 - Feedback
 - Gradually increase inspiratory volume to threshold
 - Optimise breathing pattern
 - Commence with expiration
Breathing Assessment and training

Muscle activation: Techniques

• Reduce activity of OE/OI/RA/TL ES
 – Whole body posture (more activity, more support)
 – Spinal posture (less activity of global in neutral)
 – Instruction
 – Breathing techniques
 – Feedback (EMG, palpation)
 – Decrease effort
 – Connective tissue techniques, trigger point, dry needling
 – Inhibitory taping
 – Imagery

Breathing pattern: Techniques

• Optimise posture to optimise breathing
 – Retrain neutral posture

Assessment: Postural alignment

• Evaluation of sagittal and frontal alignment

• Evaluation of spinal curvature

• Evaluation of muscle activity

Postural correction: Techniques

Cognitive correction

• Instructions
 – e.g. roll forwards on tailbone, breathe into base of ribs
 – Imagery
 – e.g. lengthen spine
 – Manual guidance
 – e.g. hand on sacrum to facilitate anterior rotation of pelvis
 – Manual cues
 – e.g. finger on xiphoid and navel to control T-L junction
 – Dissociation tasks
 – e.g. separate L/L motion
 – Muscle activation
 – e.g. palpation, observation, EMG biofeedback
 – Cues/reminders
 – e.g. taping

Breathing pattern: Techniques

• Optimise thorax dynamic control (thoracic spine & rib cage) to optimise breathing
 – Thoracic spine mobility/motor control – exercise, manual therapy
 – Rib cage mobility/motor control – exercise, manual therapy

• Optimise efficiency of breathing pattern in disease
 – Optimise breathing movements & muscle activity
 – Increase fitness – pulmonary rehabilitation
 – Flexibility – muscle length & thorax dynamics
Breathing pattern: Techniques

- Train breathing pattern with motor control progressions